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ABSTRACT

https://doi.org/10.1145/3389189.3398000Historic preservation of tangible
cultural heritage assets is a process that goes beyond structural
integrity to the restoration of the interior decorations, such as wall-
paintings or icons since this provides a complete restoration process
of the monuments that face both their architectural and functional
elements. This process is imperative, as in a lot of cases parts of the
assets (e.g., frescoes) are decayed or missing due to the passage of
time and other environmental, natural or anthropogenic factors. An
indicative paradigm of such a decay is the Byzantine churches in
Meteora area, a UNESCO cultural heritage site in Greece.
However, the limitations in taking samples from such sights
indicate that before such fresco restoration process commences, we
first need to semantically classify the monument surfaces into
different material types, such as stone, mortar or frescoes. The
research challenge imposes this semantic classification process is
more evident in cases where the surfaces of the monument are not
planar but complex, such as in many byzantine churches carved in
rock in Meteora.

In this paper, the semantic classification is achieved using a deep
Convolutional Neural Network (CNN) which receives as input two
types of data: RGB images of the frescoes to capture textural
information and 3D cubes that encapsulate the geometric structure
of the surface. RGB images describe visual complexity of the
frescoes including texture maps and style. On the other hand, the
3D cubes include triangles of the surface, obtained using
photogrammetric methods, describing surface complexity. The
CNN consist of two layers; a deep convolutional layer which
automatically extracts a set of reliable features from the input raw
data and a conventional feedforward neural-based classification
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
PETRA '20, June 30-July 3, 2020, Corfu, Greece

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7773-7/20/06...$15.00
https://doi.org/10.1145/3389189.3398001

Athens, Greece

499

Athens, Greece

layer. To detect the missing items and the material types,
overlapped input data are fed as inputs to the CNN as if the network
“scan” the decorations to discriminate the type of their materials.
The classification performance is tested on real-world destroyed
byzantine frescoes of Saint Stephanus Monastery in Meteora.
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1 INTRODUCTION

One salient aspect in historic preservation of monuments is,
apart from rehabilitating their structural integrity and retaining the
resilience of the building materials, the restoration of the interior
decorations, such as murals or icons, since this provides a complete
restoration process of the monuments that face both their
architectural and functional elements. For instance, in old byzantine
churches, such as the ones of the famous monasteries in Meteora
area, Greece (UNESCO cultural heritage monuments), one critical
issue is to restore missing or decayed parts of wall frescoes which
have been destroyed due to environmental and
anthropogenic factors through time. Before such fresco restoration
process commences, the semantically classification of the
monument surfaces into different material types like stone, mortar
or fresco is very helpful. The research challenge of this semantic
classification process is more evident in cases, such as in most of
the byzantine churches in Meteora, where the surfaces of the
monument are not planar but complex (free form surfaces instead
of surfaces following a mathematical shape) since the irregular
surface of the rocks is incorporated and is part of the church
masonry.
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In this paper, the semantic classification is achieved using a deep
Convolutional Neural Network (CNN) which receives as input two
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types of data: (a) RGB images of the walls to capture textural
information, and (b) 3D cubes that encapsulate the geometric
structure of the surface. RGB images describe visual complexity of
the wall including texture maps and style. On the other hand, the
3D cubes include triangles of the surface, obtained using
photogrammetric methods, describing surface complexity. The
CNN consist of two layers; a deep convolutional layer which
automatically extracts a set of reliable features from the input raw
data and a conventional feedforward neural-based classification
layer. To detect the missing items of the frescoes and the material
types, overlapped input data are fed as inputs to the CNN as if the
network “scan” the decorations to discriminate the type of their
materials. The classification performance is tested on real-world
destroyed byzantine frescoes of Saint Stephanus Monastery in
Meteora.

1.1 Previous Work

To achieve sustainable protection and restoration of such assets
the characterization of building materials and decay is of utmost
importance, especially in terms of intervention conservation
practices. For the protection of a monument, in most cases, it is
forbidden to take samples [1], [2]. Therefore, the scientific
community turns to non-invasive and no-contact practices to
acquire the necessary information. For the building materials
characterization, non-destructive techniques are utilized for the
determination of the pathology of a monument. The collection of
vast amounts of data using these techniques, can contribute to the
protection of cultural heritage assets and also for the decision
making on conservation approaches ([1], [2], [3], [4]). Over the last
decade, there is an immerse use of digital geometric documentation
processes, especially for the creation of three-dimensional (3D)
textured models ([5], [6], [7]). The combination of
photogrammetric and computer vision algorithms (Structure-from-
Motion techniques) may provide accurate and detailed 3D
architectural surveys with radiometric information ([8], [9], [10]).

For the protection of a cultural heritage asset, the classification and
representation of a monuments’ pathology aims to control the
decay progress and to improve planning of conservation
interventions [1]. Within the framework of cultural heritage assets
protection, practical needs emerge regarding the integrated study
management and the knowledge deriving from incompatible
interventions towards an interdisciplinary integrated approach.
Moreover, the academic community adopts such approaches,
especially for the investigation of assets construction phases,
deformations and restoration practices, for their visualization and
projection in multiple digital platforms. The tendency is to use
Geographic Information System (GIS) or Building Information
Modelling (BIM) software to create 3D models ([11],[12],[13])
incorporating information of the abovementioned disciplines as
well as other depending on the project’s scope (documentation,
visualization, dissemination, restoration etc.)

In cultural heritage the use of machine learning techniques has
proved effective in various instances both in static environments
(i.e. tangible assets) and even for dynamic environments (intangible
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cultural assets). In [14] multispectral information and machine
learning for non-destructive preservation of cultural assets is used.
Moreover, a number of machine learning approaches has been used
for semantic classification of cultural heritage assets. In [15] and
[16] machine learning techniques and the effect of Industry 4.0
innovations for semantic annotation of cultural heritage assets is
studied. In [17] a collection of datasets for benchmarking machine
learning techniques in cultural heritage is provided. [18] provides
a machine learning framework for the automated classification of
heritage buildings. Similar approaches, employing non-machine
learning techniques have also been used. Such techniques include
thematic mapping ([19]) and hierarchical models ([20]). However,
even in the case of user monitoring and time-varying environments
deep learning approaches have proved useful, as indicated in [21].
This can be translated into providing semantic information in even
intangible cultural heritage assets, as is the case for [22], [23] and
[24].

In this work a similar approach based on convolutional neural
networks to provide semantic information for identifying
decoration materials in tangible cultural heritage assets is
presented. This approach was experimentally tested using a dataset
captured in a Byzantine church in Meteora area (frescoes in the
Katholikon of the Saint Stephanus Monastery).

2 PROBLEM FORMULATION

Let us denote as y(n) = [Py P, ... Py]Ta NxI vector that
contains the probabilities P, that the observations at pixel instance
n can be classified as one of N types of materials. Let us now
assume that there is a non-linear function that relates probabilities
y(n) with some measurable observations x(n). In the following
notation, we assume that x(n) are multidimensional tensors of the
input data. Assuming a non-linear dependency of the classification
output and the previous classification values, we derive a non-linear
autoregressive-moving average model:

y(n) = gx(n) + en) (1
where g(-) refers to the non-linear relationship. Vector e(n) is an
independent and identically distributed error. Eq. (1) cannot be
easily calculated, as g(+) is unknown. The use of machine learning
methods can produce an approximation of g(:) in a way that
minimizes the error e(n). A feed forward neural network (FNN)
can simulate the behavior of such function. However, this FNN
model fails at effectively selecting features of high-dimensional
space and complex heterogeneous environments. Convolutional
Neural Networks have demonstrated excellent representational
capabilities in feature selection as in [25]. The proposed filter
exploits the effectiveness in feature selection of CNN, in order to
select optimal features that enable the classification of the observed
behaviors.

After the input layer that receives the current data, we proceed with
the convolutional/pooling layers. This layer applies convolutional
transformations on the input data so as to maximize the
classification performance. The convolutions are executed over the
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Figure 1: System Architecture

input data and a set of kernels, in order to select appropriate
features. The kernel parameters are estimated in a way that
minimizes the performance error on a ground-truth training set. The
L feature maps, denoted as f1, f2,..., f1 are used as inputs in the final
(classification) layer. In the experimental evaluation, the
convolutional/pooling layers consist of three different
convolutional layers, with 5x5x4, 5x5x32 and 5x5x32 respective
filter sizes, separated by the ReLU and Max pooling components.

The final component of the filter is the classification layer that
receives the f1, f2,..., fi feature maps and triggers a supervised
behavior classification. The fi feature maps are tensors with
dimensions that express the spatial attributes and the different
modalities of the input data.

The classification layer consists of » neurons, each stimulating a
non-linear operation, where the sigmoid is neuron activation
function. If we denote as w; j the weights that connect the i-th
feature map f; with the j-th hidden neuron of the classification
layer, then the output of this neuron will be u; = (p(ij - f), where
f is the aggregate feature map concatenating all features f; and w;
the aggregate weights for the j-th hidden neuron. Then, output will
be given as:

yw® =" u )= e(z,() ()
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where u includes all outputs u; over all the » hidden neurons and v
the aggregate weights connecting the » hidden neurons of the
classification layer with the output neuron. In Eq. (2), z,(n)
expresses the input of the final output neuron before applying the
activation function ¢ (+). In the previous notation, we have assumed
that the classification output consists of one neuron. Extension to
multiple neurons is straightforward. Subscript w in Eq. (2) denotes
the dependence of the classification on the network weights which
will be estimated through a learning process. In our configuration,
the proposed model consists of 64 hidden layers and two output
neurons.

A schematic diagram of the proposed architecture is presented in
Figure 1.

3 SYSTEM ARCHITECTURE

In this section the proposed implementation of a Convolutional
Neural Network is described.

Convolutional Layer: The purpose of this layer is to apply
convolutional transformations on the input data in a way as to
maximize classification performance. A set of parameterisable
filters (e.g., learnable kernels) is convolved with the input data
selecting appropriate features and estimating kernel parameters so
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Figure 2: Example sample of the dataset

that performance on a ground truth training set is maximized. The
L feature maps, say f 1, f 2, ..., f L, optimally selected by the
convolutional layer will be used as input to the final classification
layer.

Classification Layer: The Classification Layer receives as input
the transformed representations from the convolutional layer, i.e.
feature maps fi, fo,...,fr, and triggers the final (supervised)
classification. Normally, feature maps f; re tensors of a high
dimensional grid. The first dimensions express the spatial attributes
of the scene, either in 2D or 3D space, while the rest refer to the
different modalities (channels) of the input data. In the following,
to simplify the notation, we assume, without loss of generality, that
the feature maps f; are scalars. Extension to tensors can be done by
exploiting tensor algebra properties and appropriate modification
of the inner product operators.

4 PERFORMANCE EVALUATION

4.1 Dataset Description

For the experimental evaluation of the proposed system, data
captured from the interior walls of a Byzantine church in Meteora
(Katholikon of Saint Stephanus Monastery) are utilised. The walls
are covered by frescoes, other painting decorations, stones and
mortar.
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The RGB image used to capture the textural information is the
ortho-image of each wall. This ortho-image is an accurate 2D
representation of the textured 3D model on a plane parallel to the
mean plane of the (non-planar) wall. The textured 3D model of the
interior of the church and the ortho-images of the walls was
produced by photogrammetric and SfM techniques. Initially, a
large number of RGB images of the interior of the church using a
24mm focal length camera and field measurements of control
points for the georeferencing were captured. Then, the dense point
cloud representing the DSM of the surfaces, the solid 3D model
and, finally, the ortho-images are created.

A part of the ortho-image of the western wall including the entrance
of the church is presented in Figure 2. To annotate this image, in
collaboration with cultural preservations the DBSCAN [26]
algorithm to separate the image in clusters, that are in turn
annotated by the preservators, is used. The image and the labels are
then fed to the CNN for training.

4.2 Overview of the implementation

The CNN classifier, as well as the other frameworks that are
described in Section 4.3, the performance of which was tested
against the proposed model were implemented in Python 3.6 using
the Keras (1.08) and Tensorflow (2.1.0) libraries. For
hyperparameter optimization the Tune library was used. The
system was trained on an Intel Core 17-6700K CPU (4GHz) with 2
NVIDIA GTX1080 GPUs.
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One of the main drawbacks of deep machine learning techniques is
the fact that they require large training datasets, to optimize the
algorithm performance and that usually the training of such
classifiers is computationally demanding. However, the captured
dataset proved enough to reach high levels of accuracy, as is
presented in the following sections. Moreover, the training of the
CNN required approximately an hour of training time. This is an
acceptable computational cost based on the application scenario,
though the training was significantly slower than the other testing
classifiers.

4.3 Experimental Validation

The classification performance of the proposed Deep
Convolutional filter was compared with different classifiers, i.e. (i)
a linear kernel SVM, and (ii) an architectures of a traditional
feedforward neural network with 2 hidden layers of 10
neurons/layer. The results are presented in Figure 3 and in Table 1.
CNN clearly outperforms all the other classifiers. For assessing the
performance of the classifiers, we used the popular metrics
accuracy (ration of correct predictions over the total of predictions
made), precision (number of correct prediction divided by the
number of total predictions made), recall (number of correct
predictions divided by the total number of elements present in that
class) and F1-score (harmonic mean of precision and recall).

—8—SVM

F1Score Precision FNN

—8—CNN

Recall

Figure 3: Performance of the various classifiers

Table 1: Classification performance metrics on multimodal

experiments
Method Train | Accuracy | Precision | Recall | F1
Time Score
33 86.78 % 91.10% | 82.08 | 86.35
SVM min % %
40 92.61 % 89.84 % 88.46 89.15
FNN min % %
CNN 5§ 95.20 % 97.52% | 94.01 95.73
min % %

As is observed the proposed CNN classifier outperforms the
other tested methods, while the FNN and SVM classifiers show
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similar performance, especially when studying the precision of the
models. This can be attributed to the ability of the CNN to create
appropriate filters that extract representative features that drive the
classification stage.

Moreover, the CNN classifier displays not only better accuracy,
i.e. has a higher ratio of correctly predicted observations to the total
observations. CNN also displays higher precision, and recall.

5 CONCLUSIONS

In this paper we argued the need of an intelligent system that
can semantically enrich the 3D models of a cultural heritage asset
in a way that facilitates the restoration and preservation of such an
asset. We formulate this as a classification problem, were the
enriched information takes the form of pixel level annotation over
the ortho-image that is extracted from the 3D model of the interior
of a Byzantine church in the UNESCO Cultural Heritage Site of
Meteora. We utilize a Convolutional Neural Network and
demonstrate that this architecture can efficiently extract
representative features from the ortho-image and classify the ortho-
image pixels over a number of predetermined materials.
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