
Charalabos Ioannidis, Argyro Maria Boutsi

3D
 G

eoInfo 2020 & BIM
 G

IS Integration W
orkshop

7 -11 Septem
ber, London

MULTI-THREADED RENDERING FOR
CROSS-PLATFORM 3D VISUALIZATION
BASED ON VULKAN API

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF RURAL AND SURVEYING ENGINEERING
LABORATORY OF PHOTOGRAMMETRY

Motivation & Graphics APIs

Aim & Challenges

Methodology

Implementation

Evaluation

Conclusion

PRESENTATION OUTLINE

3DGEOINFO 2020

TOPICS TO DISCUSS

EXPLICIT CONTROLPORTABILITYHIGH-PERFORMANCE

Need of (i) visualization of multi-source & high-dimensional 3D spatial data in a consistent way
(ii) maintenance of visual quality & geometric accuracy

Lack of (iii) dedicated hardware & high-end processing units

FIELD OF PHOTOGRAMMETRY & GEOMATICS

Characteristics of software for local rendering

3DGEOINFO 2020

MOTIVATION

Application Abstraction HardwareDevice Driver

Graphics APIs

Graphics Processing Unit (GPU): Multi-core performance | Parallelism | Programmable functionality

GPU PROGRAMMING & SOFTWARE PIPLINE

3DGEOINFO 2020

GPGPU - Compute APIs:
CUDA & OpenCLProgram - controller

of the overall
process, user-level
operations as
creating threads,
windows etc.

Graphics API -
dispatch to the next
layer, functions for
passing commands
in a standardized
format

Communication
software layer -
interface between
the CPU & GPU,
invisible to the
developer

INTRODUCTION

GRAPHICS APIs

3DGEOINFO 2020

TRADITIONAL | MODERN / LOW-LEVEL

Lower CPU overhead & reduced bottlenecks

More stable/predictable driver performance

Explicit, console-like control (synchronization & memory allocation)

Cross-platform Cross-platformVendor-specific (Microsoft) Vendor-specific (MacOS, iOS)

GLSL shading language SPIR-V formatHLSL C++ 14 shading language

Driver overhead

Cross-vendor unpredictability

Memory & error management

INTRODUCTION

APP FOR 3D RENDERING & VISUALIZATION

3DGEOINFO 2020

AIM: Cross-platform 3D model viewer with multi-threading support based on modern C++ and Vulkan

- Running on Windows, MacOS & Android

- Suited to graphics hardware compatible with Vulkan's driver

- Rendering a high-resolution textured mesh (OBJ) into an interactive GUI

Challenges:
- Explicit rendering pipeline creation

- Memory allocation & resource (buffer & image) creation

- Synchronization

- Portability across mobile Android platforms

Methodology:
- Multi-threaded command buffer generation

with synchronization primitives

- Render passes for adapting to mobile GPU's

tiled-rendering

AIM & CHALLENGES

RENDERING 3D GRAPHICS

3DGEOINFO 2020

- Create a VkInstance & select a supported graphics card (VkPhysicalDevice)

- Create a VkDevice and VkQueue for drawing and presentation

- Create a window, window surface and swap chain

- Wrap the swap chain images into VkImageView

- Create a render pass that specifies the render targets and usage

- Create framebuffers for the render pass

- Set up the graphics pipeline (VkCreateGraphicsPipeline)

- Allocate and record a command buffer with the draw commands for every possible swap chain image

- Draw frames by acquiring images, submitting the right draw command buffer and returning the images

back to the swap chain

INITIALIZATION

METHODOLOGY

GRAPHICS PIPELINE

3DGEOINFO 2020

Series of steps to render objects to the screen vkCreateGraphicsPipeline:

Shaders
VertexInput State

InputAssembly State
Tesselation

Viewport State
Rasterization State
MultiSample State
DepthStencil State
ColorBlend State
Pipeline layout

RenderPass

x, y, w, h
minDepth,
maxDepth

offset
extend

Viewport

Scissor

VkViewportStateCreateInfo

VkPipelineInputAssemblyStateCreateInfoTopology (vertices & indices)

depthTestEnable | stencilTestEnable
depthWriteEnable | stencilOpStateFront
depthCompareOp | stencilOpStateBack

VkPipelineDepthStencilCreateInfo

Desciptor Set Layouts

Push Constants

VkPipelineLayoutCreateInfo

METHODOLOGY

RENDERING 3D GRAPHICS

3DGEOINFO 2020

- Create a VkInstance & select a supported graphics card (VkPhysicalDevice)

- Create a VkDevice and VkQueue for drawing and presentation

- Create a window, window surface and swap chain

- Wrap the swap chain images into VkImageView

- Create a render pass that specifies the render targets and usage

- Create framebuffers for the render pass

- Set up the graphics pipeline (VkCreateGraphicsPipeline)

- Allocate and record a command buffer with the draw commands for every possible swap chain image

- Draw frames by acquiring images, submitting the right draw command buffer and returning the images

back to the swap chain

INITIALIZATION

MULTI-THREADING

METHODOLOGY

cmd cmd cmd cmd cmdQueue

SINGLE-THREADED SUBMISSION

3DGEOINFO 2020

Command Buffers - VkCommandBuffer: Recording commands which are later submitted to a device for
execution (draw/dispatch, texture uploads, etc)

CPU Thread

cmd cmd cmd cmd cmd

driver

GPU

Once the command buffer fills up, it will get
submitted to the GPU for execution.

The driver will add the complete buffer to a queue
for the GPU front-end to process.

The GPU will begin reading &
processing, while the CPU is free
to start writing new commands to
another buffer.

METHODOLOGY

Queue

MULTI-THREADED SUBMISSION & TILE-BASED RENDERING

3DGEOINFO 2020

CPU Thread cmd

GPU

Developed Multi-threading technique: Two levels of commands buffers (Primary & Secondary)

1. Drawing commands in the main thread through the rendering pipeline - Secondary command buffer recording in worker

CPU's thread

2. Report of the completed operations to the primary command buffer

3. Last operation (i) ends the render pass

(ii) reports to the window surface that the frame is ready

(iii) updates the render state

CPU Thread

CPU Thread

cmd

cmd cmd

cmd cmd cmd cmd cmd cmd cmd cmd cmd

METHODOLOGY

SYNCHRONIZATION & THREAD MANAGEMENT

3DGEOINFO 2020

Scheduling & synchronization of operations submission to the queue: Timeline Semaphore primitive
Role: (i) access of shared resources

(ii) control of submission order

Developed semaphore programming: Integration to the algorithms of queue operations

Rendering image views from
the swap chain

Signal of single semaphore for
multiple threads in multi-threading

submission

METHODOLOGY

TILE-BASED RENDERING FOR MOBILE GPU

3DGEOINFO 2020

Multi-threading approach in mobile devices with tiled-based rendering:

(i) Recording of drawing commands in the secondary command buffers

(ii) Submission to the same render pass

Developed techniques:

- Multi-render passes for faster tile cache memory

- Merge of render passes on the same chip memory

like pixel correspondences and shading

Color

Depth Normal Diffuse Lighting

Geometry Buffer Shade

METHODOLOGY

Case study: St. Modestos rock of the UNESCO site of Meteora, Greece

Tools & Libraries:
- Visual Studio IDE (Initial development)

- Vulkan SDK by LunarG

- GLFW: surface and events creation

- assimp: 3D model loading, parsing and storing in the program-specific format

CASE STUDY & THIRD-PARTY LIBRARIES

3DGEOINFO 2020

Format
OBJ

Vertices
4M

Size
1 GB

IMPLEMENTATION

Rendering parallelization across four CPU cores & two levels of command buffers
- Primary Command Buffer:

(i) Recording of the workload with big state changes

(ii) Consuming the drawing calls for the visualization of the 3D model & its image texture

- Secondary Command Buffer: Building & dispatching draw calls within a render pass

MacOS: MoltenVK runtime library (i) SPIR-V conversion to MSL

(ii) Vulkan mapping to Apple's Metal graphics framework

Android:Low-latency memory configuration - Android Studio IDE

MULTI-THREADING PROGRAMMING & MULTI-PLATFORM SUPPORT

3DGEOINFO 2020

IMPLEMENTATION

VISUALIZATION RESULTS

3DGEOINFO 2020

Windows MacOS Android

IMPLEMENTATION

MULTI-PLATFORM PERFORMANCE ANALYSIS

3DGEOINFO 2020

Hardware specifications Test Results

GPU/Memo
ry CPU FPS

Total
CPU

usage

Windows
10

MacOS
10.15.4

Android 9

NVIDIA
GeForce RTX
2070, 8 GB

GDDR6
AMD Radeon
Pro 555X, 4
GB GDDR5

Qualcomm
Adreno 610

Windows
10

Windows
10

Windows
10

145

117

52

22,57 %

29,88 %

33,42 %

Number of Cores
Single -threaded

Two

Three

Four

Time (ms)
454.07

233.85
173.52

125.22

Aim: Efficacy of the developed rendering techniques
& synchronization strategies on mutilple platforms
and devices of various capabilities

EVALUATION

OUTREACH & FUTURE WORK

3DGEOINFO 2020

- Great portability to a multitude of devices & platforms

- High-degree of performance stability

- Adaptation to the implicit tile-based rendering

- Ability to handle large files & attain visual quality

Visualization cases & areas of interest:
Cultural Heritage | 3D cadastral | Urban planning |

LiDAR data | 3D scanning products

OUTREACH

FUTURE WORK

- Support of more 3D formats

- Ray-casting option for photo-realistic textures & advanced post-processing effects

CONCLUSION

Thank you for your attention

@project_meteoraMeteora Project https://www.meteora.net.gr/en/
contact-us/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

